8 research outputs found

    PointMap: A real-time memory-based learning system with on-line and post-training pruning

    Full text link
    Also published in the International Journal of Hybrid Intelligent Systems, Volume 1, January, 2004A memory-based learning system called PointMap is a simple and computationally efficient extension of Condensed Nearest Neighbor that allows the user to limit the number of exemplars stored during incremental learning. PointMap evaluates the information value of coding nodes during training, and uses this index to prune uninformative nodes either on-line or after training. These pruning methods allow the user to control both a priori code size and sensitivity to detail in the training data, as well as to determine the code size necessary for accurate performance on a given data set. Coding and pruning computations are local in space, with only the nearest coded neighbor available for comparison with the input; and in time, with only the current input available during coding. Pruning helps solve common problems of traditional memory-based learning systems: large memory requirements, their accompanying slow on-line computations, and sensitivity to noise. PointMap copes with the curse of dimensionality by considering multiple nearest neighbors during testing without increasing the complexity of the training process or the stored code. The performance of PointMap is compared to that of a group of sixteen nearest-neighbor systems on benchmark problems.This research was supported by grants from the Air Force Office of Scientific Research (AFOSR F49620-98-l-0108, F49620-0l-l-0397, and F49620-0l-l-0423) and the Office of Naval Research (ONR N00014-0l-l-0624)

    Binaural Cues for Distance and Direction of Nearby Sound Sources

    Full text link
    To a first-order approximation, binaural localization cues are ambiguous: a number of source locations give rise to nearly the same interaural differences. For sources more than a meter from the listener, binaural localization cues are approximately equal for any source on a cone centered on the interaural axis (i.e., the well-known "cones of confusion"). The current paper analyzes simple geometric approximations of a listener's head to gain insight into localization performance for sources near the listener. In particular, if the head is treated as a rigid, perfect sphere, interaural intensity differences (IIDs) can be broken down into two main components. One component is constant along the cone of confusion (and thus co varies with the interaural time difference, or ITD). The other component is roughly constant for a sphere centered on the interaural axis and depends only on the relative pathlengths from the source to the two ears. This second factor is only large enough to be perceptible when sources are within one or two meters of the listener. These results are not dramatically different if one assumes that the ears are separated by 160 degrees along the surface of the sphere (rather than diametrically opposite one another). Thus, for sources within a meter of the listener, binaural information should allow listeners to locate sources within a volume around a circle centered on the interaural axis, on a "doughnut of confusion." The volume of the doughnut of confusion increases dramatically with angle between source and the interaural axis, degenerating to the entire median plane in the limit.Air Force Office of Scientific Research (F49620-98-1-0108

    Empirical And Modeled Acoustic Transfer Functions In A Simple Room: Effects Of Distance And Direction

    No full text
    Research Laboratory of Electronics, Massachusetts Institute of Technology 50 Vassar St Cambridge, MA 02139 j gd@ alum. mir. edu Empirical transfer functions were measured for a manikin head as a function of source position (re: the listener) and listener position (re: the room) for sources within a meter of the listener. Empirical results are compared to room simulations using a standard image-method model combined with anechoic, distance-dependent head-related transfer functions (HRTFs). Results suggest that the biggest discrepancies between measured and modeled impulse responses arise due to interactions of the head with the source, which cannot be ignored for sources this close to the listener. Results give insight into the importance of the acoustic effects of the head and room on the total signal reaching a listener and have implications for understanding spatial perception in rooms and developing realistic 3-D spatial auditory displays

    Localization in speech mixtures by listeners with hearing loss

    No full text
    The ability of listeners with bilateral sensorineural hearing loss to localize a speech source in a multitalker mixture was measured. Five simultaneous words spoken by different talkers were presented over loudspeakers in a small room, and listeners localized one target word. Errors were significantly larger in this group compared to a control group with normal hearing. Localization of the target presented alone was not different between groups. The results suggest that hearing loss does not impair spatial hearing per se, but degrades the spatial representation of multiple simultaneous sounds

    Psychophysics and neuronal bases of sound localization in humans

    No full text
    corecore